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presented for comparison [l]. Since the characteristics are 
very similar for Ar, Kr and Xe, the total wall heat flux from 
these arcs are virtually identical. Since the electrical resist- 
ance, and hence the field intensity, for the He arc is much in 
excess of that for Ar, Kr and Xe, the total wall heat flux for 
He will exceed the values for the other gases. For each of these 
gases, the total wall heat flux, as well as the total wall heat 
transfer per unit length of tube (W/m), decreases significantly 
with increasing radius [5]. Although the total wall heat flux 
increases with pressure for Ar, Kr and Xe, it decreases with 
increasing pressure for He [5]. 

For use of the arc as a radiation source, a quantity of 
particular interest is the fraction of the total heat loss due to 
radiation. This is shown as a function of arc current in Fig. 4. 
The merit of the Xe arc is readily apparent. In contrast to 
negligible radiation from He and peak radiation efficiencies 
of 53 and 62 per cent for Ar and Kr, respectively, the radia- 
tion efficiency of Xe is approximately 75 per cent for the 
indicated operating conditions. Although there is little 
effect of changing tube radius, the radiation efficiency IS 
increased significantly with increasing arc pressure. For a 

I cm dia Xe arc operating at 100 A and lOatm, the calcula- 
tions suggest a conversion efficiency of 99 per cent [5]. 
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NOMENCLATURE INTRODUCTION 

tube radius: 
tube diameter: 
modified Bessel functions: 
Nusselt number: 
Prandtl number, v/at: 
cylindrical coordinates: 
dimensionless cylindrical coordinates: 
Reynolds number, U,D/r: 
temperature: 
velocity components in X and R directions: 
parameter, a function of X alone: 
dimensionless temperature, 

(T- T,)/(T, - T,). 

DUE TO mathematical difficulties, steady laminar flow in 
hydrodynamic entrance region of tubes and ducts does not 
have any exact solution. So far, several approximations have 
been devised to solve the problem. One of the earliest in- 
vestigations was done by Langhaar [1] in 1942. By means ofa 
linearizing approximation, the Navier-Stokes equations 
were solved for the case ot steady flow in the transition length 
of a straight tube. Han [2] and Sparrow et al. [3] applied 
this approximation to the cases of rectangular ducts and 
parallel-plate channels, respectively. But no detailed in- 
formation was given about velocity components in the 
directions normal to the axial flow in the above papers 
[l-j]. 

Considering the laminar convection in combined hydro- 
dynamic and thermal entrance region of tubes, kays [4] 
utilized the Langhaar’s axial velocity profile [l] in the energy 
equation without considering the convective term in radial 
direction and obtained heat transfer results for three 
boundary conditions. He claimed that at 4 (X/D)/(Pr Re) = 
0.004 the convective term in radial direction is only 10 per 
cent of that in axial direction in energy equation at one point 
in the flow cross section, and that if the convective term in the 
radial direction is neglected, the local Nusselt number 

mixed mean value or mean value: 
condition at tube inlet: 
condition at tube wall: 
local value. 
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evaluated from calculated temperature profiles will tend to 
be low, and the error should be less than 5 per cent at 4 (X/D)/ 
(Pr Re) = 0.004. Experimental work was done only for 
constant wall temperature at 4 (X/D)/(Pr Re) > 0.06 and 
for constant heat input at 4 (X/D)/(Pr Re) > 0.02. Heaton 
et al. [S] made an analysis of the problem of laminar flow 
heat transfer in an annulus with simultaneously developing 
velocity and temperature distributions and constant wall 
heat flux. Kays summarized the above results and reported 

in [61. 
‘The purpose of this investigation is to present the effect of 

radial velocity component on laminar forced convection in 
combined hydrodynamic and thermal entrance region of a 
circular tube with two boundary conditions. As a result of 
the radial direction convective motion, the Nusselt numbers 
are found to be lower than those of Kays’ solution which 
neglected the effect of radial velocity component and this 
contradicts Kays’ speculation [4]. The present results are 
also confirmed by a complete finite-difference technique 
using tine mesh sizes. 

THEORETICAL ANALYSIS 

Consider a steady laminar flow in combined hydro- 
dynamic and thermal entrance region of a circular tube under 
some prescribed thermal boundary conditions. According 
to Langhaar’s solution [l], the velocity component in the 
axial direction is 

U(R> X) = U,[I,(Ba) - ~,,(BR)]/~,(Pa). (1) 

In this investigation the above Langhaar’s profile (1) will be 
employed to compute the radial velocity component from the 
continuity equation. The solution for radial velocity com- 
ponent is 

It is noted that the above expression of V satisfies boundary 
conditions at R = 0 and R = a, and the evaluation of the 
term ~~/~(~a) will be referred to [ 11. The energy equation is 
solved by employing the Crank-Nicolson finite-difference 
method. The numbers of divisions in axial and radial direc- 
tions are the same as the ones utilized in [4]. 

In order to confirm the accuracy of the present solution. 
This problem is resolved by a complete CrankPNicholson 
finite-difference method for the case of Pr = 0.7 and T, = 
constant. The mesh sizes in radial and axial directions are 
tabulated in Table 1, where r = R/a and x = 4X/(ReD). 

Table 1. Mesh sizes in radial and axial direction.5 

x 

\ 

0 - OQOl 0.001 - 0.01 0.01 - 0.1 0.1 - 1 
r 

l/30 0~0001/3 0.001/3 00113 0.113 

l/40 0~0001/4 oGO1,/4 0,01/4 0.1/4 

FLOW AND HEAT TRANSFER RESULTS 

Figure I shows variations in ratio of radial convective 
term and axial convective term, (ET/aR)/(U8T/aX), with 
dimensionless axial position, x, at different values of dimen- 
sionless radial position, R/a. In this figure, we see that the 
magnitude of the curve R/u = 0.9 goes as high as 0.4 at 
x = 0.001 and as x increases, the value decreases very 
gradually. At axial positions close to the fully developed 
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FIG. 1. 1 VI~T/~R)/(U~T/C?X)~ vs x. 
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region, say x = 0.1, the ratio in some flow cross section is curve of local Nusselt number with V # 0 starts to deviate 
still greater than 0.1. We can conclude that the effect of radial 
direction convective motion may not be ignored in com- 

from the one with V= 0 at x = 0.06. As x decreases, the 
difference becomes pronounced. A difference in the values of 

parison with the convective motion in axial direction in most 
of the entrance region. 

local Nusselt numbers of 40 per cent based on the present 
result is found at x = 0.001. The same situation is also 
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FIG. 2. Nusselt numbers for the case of Pr = 0.7 and constant 
wall temperature. 
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FIG. 3. Nusseh numbers for the case of constant wall 
temperature. 

According to the definitions in reference [4], the local 
Nusselt number, Nu,. and mean Nusseh number, Nu,, for 
the case of Pr = 0.7 and constant wall temperature are 
plotted in Fig. 2. In order to confirm the present result, 
solution with V= 0 was calculated and these curves check 
well with the ones obtained by Kays [4] for both local and 
mean Nusselt numbers. The accuracy of the solution with 
V # 0 is also assured by a complete numerical solution. When 
the effect of radial velocity component is considered, the 

observed in the values of mean Nusselt numbers. Ranging 
from x = 0.05 to x = 0.4, there are individual points showing 
the experimental result obtained by Kays [4]. The experi- 
mental data with 5 per cent uncertainty, in general, lie 
between the curves considering or neglecting the effect of 
radial velocity component. 

Figure 3 shows values of Nusselt number for the case of 
constant wall temperature with Prandtl number as a para- 
meter. We present here the solution obtained using Langhaar 
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FIG. 4. Nusselt numbers for the case of constant heat flux. 
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velocity profile (1) and equation (2) and the solution obtained 
by complete numerical method. Good agreement between 
these two solutions is found for the values of local Nusselt 
numbers. But due to the integration of local Nusselt num- 
ber in equation (4), a slightly larger error is observed for the 
curves of mean Nusselt number. 

The Nusselt numbers for the case of constant heat flux and 
Pr = O.LO.7.7 and 10 are presented in Fig. 4. Experimental 
data, discussed by Klein and Tribus [7], are also reproduced 
from Kays [4]. The range of these data is from x = 0,015 to 
x = 0.2 in which the difference between the solutions con- 
sidering and neglecting the effect ofradial velocity component 
is small. 

CONCLUSIONS 

Although the magnitude of radial velocity component in 
comparing with the one in axial direction is small, the 
effect of radial convective motion as shown in Fig. 1 
cannot be ignored in combined hydrodynamic and 
thermal entrance flow region. With the effect of radial 
velocity component, the value of heat transfer coefficient 
is lower than the one obtained neglecting the radial 
velocity component. This prediction contradicts with the 
speculation made by Kays [4]. 
It is believed that similar effect of radial velocity com- 
ponent will be found in parallel plate channel, rectangular 
channel or different geometrical cross sections. 

Acknowledgement-The authors would like to thank Father 
E. Matis for reading of this manuscript and thank the 
computing center at National Tsing Hua University for 
providing computing time. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

REFERENCES 

H. L. Langhaar, Steady flow in the transition length of a 
straight tube, J. Appl. Mech. 9, A-55-A-58 (1942). 
L. S. Han, Hydrodynamic entrance lengths for incom- 
pressible flow in rectangular ducts, J. Appl. Mech. 27, 
403409 (1960). 
E. M. Sparrow, T. S. Lundgren and S. H. Lin, Slip flow 
in the entrance region of a parallel plate channel, Proc. 
1962 Heat Transfer and Fluid Mechanics Institute, 
Stanford University Press, Stanford, Cahf., pp. 223-238 
(1962). 
W. M. Kays, Numerical solutions for laminar-flow heat 
transfer in circular tube, Trans. Am. Sot. Mech. Engrs 
77, 1265-1274 (1955). 
H. W. Heaton, W. C. Reynolds and W. M. Kays, Heat 
transfer in annular passages-simultaneous development 
of velocity and temperature fields in laminar flow, Int. J. 
Heat Mass Transfer 7, 763-781 (1964). 
W. M. Kays, Convective Heat and Mass Transfer. 
Chapter 8. McGraw-Hill, New York (1966). 
J. Klein and M. Tribus, Forced convection from non- 
isothermal surfaces, ASME paper No. 53-SA-46 (un- 
published). 


